logo nano spa 1
  • Cabecera 1
    nanoscience and nanotechnology: small is different
  • Inicio
  • Eventos
  • Inaugural lecture of the Systems Chemistry laboratory

Inaugural lecture of the Systems Chemistry laboratory

Thomas Hermans (IMDEA Nanociencia)
Martes, 19 Noviembre 2024 12:00

Place: conference hall, IMDEA Nanociencia.

Abstract

This lecture will introduce two of the main topics of the Systems Chemistry Laboratory at IMDEA Nanociencia: i) Supramolecular Systems Chemistry, and 2) Liquid-walled fluidics. Systems Chemistry. Actin or microtubule (MT) cytoskeletal networks, achieve dynamics as well as supramolecular structures with the same protein building blocks. In other words, the components can assemble, but also react (i.e., tubulin is also an enzyme that hydrolyses guanosine triphosphate GTP), which in turn affects the assemblies. In this way, living systems use chemical fuels (e.g., GTP) and self-assembly to create a built-in chemomechanical interaction. Here, I present recent[1–6] chemical reaction networks from our group, where interesting new behaviors were found, such as supramolecular size oscillations, traveling polymerization, or transient assembly. Liquid-walled fluidics. We have recently developed a completely new method to flow and pump fluids in general, using magnetically levitated “liquid tubes”.[7] Specifically, quadrupolar magnetic fields cause a magnetic liquid (i.e., a ferrofluid) to surround a second non-magnetic liquid, thus avoiding any solid wall in the entire fluidic device. Liquid tubes have unique properties, such as 60–90% reduced drag,[8] plug flow,[9] and ultra-soft walls (2–10 kPa)[10]. The liquid walls can easily deform to adapt to the shape of any solid aggregate and evacuate it in a frictionless manner. I show applications in flow chemistry and in pumping of delicate biological fluids.

[1] N. Singh, B. Lainer, G. J. M. Formon, S. De Piccoli, T. M. Hermans, J. Am. Chem. Soc. 2020, 142, 4083–4087.
[2] J. Leira-Iglesias, A. Tassoni, T. Adachi, M. Stich, T. M. Hermans, Nature Nanotechnology 2018, 13, 1021.
[3] N. Singh, A. Lopez-Acosta, G. J. M. Formon, T. M. Hermans, J. Am. Chem. Soc. 2022, 144, 410–415.
[4] A. Sharko, D. Livitz, S. De Piccoli, K. J. M. Bishop, T. M. Hermans, Chem. Rev. 2022, 122, 11759–11777.
[5] C. Chen, J. S. Valera, T. B. M. Adachi, T. M. Hermans, Chemistry A European J 2023, 29, DOI 10.1002/chem.202202849.
[6] A. Sharko, B. Spitzbarth, T. M. Hermans, R. Eelkema, J. Am. Chem. Soc. 2023, 145, 9672–9678.
[7] P. Dunne, T. Adachi, A. A. Dev, A. Sorrenti, L. Giacchetti, A. Bonnin, C. Bourdon, P. H. Mangin, J. M. D. Coey, B. Doudin, T. M. Hermans, Nature 2020, 581, 58–62.
[8] A. A. Dev, P. Dunne, T. M. Hermans, B. Doudin, Langmuir 2022, 38, 719–726.
[9] A. A. Dev, F. Sacarelli, G. Bagheri, A. Joseph, A. Oleshkevych, E. Bodenschatz, P. Dunne, T. Hermans, B. Doudin, arXiv e-prints 2024, DOI 10.48550/arXiv.2402.16510.
[10] A. A. Dev, T. M. Hermans, B. Doudin, Advanced Functional Materials 2024, 2411811.